Возбуждение автомобильного генератора. Схема подключения автомобильного генератора. Видео: быстрая проверка генератора не устанавливая на авто

Генератор - основной источник электроэнергии машины. Расскажем как он работает, из чего состоит и его устройство.

Как он работает?

При пуске двигателя основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения.

Генератор является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит?

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками - передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках.

Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а "компактной" конструкции - еще на цилиндрической части над лобовыми сторонами обмотки статора.

На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора: 1 - сердечник, 2 - обмотка, 3 - пазовый клин, 4 - паз, 5 - вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8...1 мм, но чаще выполняется навивкой "на ребро". При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор автомобильного генератора: а - в сборе; б - полюсная система в разобранном виде; 1,3- полюсные половины; 2 - обмотка возбуждения; 4 - контактные кольца; 5 - вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами - полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора , когда необходимо снять шкив и вентилятор.

Щеточный узел - это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов - меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы применяются двух типов. Это либо пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя, либо конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с "массой" и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар. Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.


Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец - обычно плотная, со стороны привода - скользящая, в посадочное место крышки наоборот - со стороны контактных колец - скользящая, со стороны привода - плотная.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения.


Система охлаждения: а - устройства обычной конструкции; б - для повышенной температуры в подкапотном пространстве; в - устройства компактной конструкции. Стрелками показано направление воздушных потоков
На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов "компактной" конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения?

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации - изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Для того чтобы обеспечить нормальную работу автомобиля необходим автогенератор. Это устройство позволяет преобразовать энергию движения в электрический ток.

Как выглядит автомобильный генератор

Генератор тока необходим для электропитания светотехнической продукции, зарядки АКБ (аккумуляторной батареи), измерительных приборов, подключения бортового компьютера и др.

Генератор постоянного тока

Первыми для автомобилей были применены генераторы постоянного тока , которые обладали массой недостатков. Внедрение новых выпрямителей нового типа (кремниевых и селеновых) позволило применять для транспорта генераторы переменного тока, которые позволили повысить эффективность установки и обеспечить большую мощность при одинаковом входном токе.

Как выглядит современный генератор

На автотранспорте, производившемся до середины 60-х гг. ХХ века применяли генераторы постоянного тока.

Главным недостатком устройств являлся быстрый выход из строя оборудования, несовершенная схема подключения, малая мощность установки, необходимость постоянного контроля и обслуживания оборудования, притом, что выходная мощность была незначительна.

Электрическая схема авто включает в себя реле регулятора напряжения. В статоре расположена обмотка возбуждения, которая соединяется параллельно с силовой обмоткой (на якоре генератора) пружинными щётками.

Общий вид регулятора напряжения

Устройство и принцип работы генератора

  • Статор трёхобмоточный (звезда).
  • Ротор с обмоткой возбуждения. Ток на него подаётся посредством подключения контактных колец и щёток.
  • Выпрямительный щит состоит из 6 полупроводниковых диодов. Преобразовывает ток в постоянный, и направляет в электрическую сеть автомобиля. Выполняет также функцию реле обратного тока.
  • Стабилизатор напряжения. Позволяет контролировать значение токовых нагрузок на обмотках возбуждения, т. е. стабилизирует уровень напряжения в устройстве. Обычно выполнен в одном корпусе. Схема выполняется в трёх вариантах: бесконтактные (исключено электромагнитное реле; регулировка переменного тока осуществляется электронным ключом); контактно-транзисторные (управление осуществляется транзисторами); вибрационные (контроль осуществляется электромагнитным реле).
  • Реле включения индикации работы генератора переменного тока. Работает от 2-х фаз источника либо от нуля выпрямителя.

Вид пружинной щёточки

Токовые ограничители не предусмотрены, т. к. схема включает в себя самоограничительные элементы.

Преимущества:

  • уменьшение габаритов генераторов автомобилей;
  • высокая надёжность и безаварийность.
  • получение генераторов большей мощности в сравнении с моделями на постоянном токе.

Реле регулятора

Устройство состоит из трёх основных элементов:

  1. ОТ (ограничитель тока) – составная часть реле, которая контролирует ток. При превышении постоянного тока выше заданного происходит отключение устройства. Включается в схему последовательно между генератором и выходным напряжением.Принцип работы: реле срабатывает при достижении постоянного тока заданного значения. Затем происходит подключение в электроцепь дополнительного сопротивления для уменьшения токовой нагрузки.

При отключённой нагрузке ОТ поддерживает параметры АКБ на одном уровне. Выход тока за верхнее предельное значение сопровождается разрядкой АКБ.

  1. СН (Стабилизатор напряжения). Контролирует мощность магнитного потока на обмотке возбуждения статора. По достижении максимального значения напряжения срабатывает защита и в электроцепь включается дополнительное сопротивление, за счёт которого происходит снижение потенциала.

Стабилизатор напряжения, необходимый для контроля мощности магнитного потока

При понижении напряжения ниже рабочего реле исключает одно или несколько сопротивлений (посредством шунтов) и ток начинает повышаться.

  1. РОТ (реле обратного тока). Устройство необходимо для автоматического включения и отключения генератора от внешней нагрузки при понижении (превышении) напряжения внешней цепи АКБ. Отсутствие РОТ влечёт за собой перегрев обмоток и бесконтрольную разрядку аккумуляторов.

Для полного контроля работы генератора электрическая схема дополнена реле включения лампы, которое сигнализирует о низком напряжении на обмотках и малой ёмкости аккумулятора.

ОТ и регулятор напряжения не могут работать одновременно. После достижения критической величины начинает работать ограничитель переменного тока.

Автогенератор на переменном токе

Работа основана на действии электромагнитной индукции – вращении постоянного магнита в прямоугольном поле.

Виды по конструктивным особенностям:

  • С вращающимися магнитными полюсами при неподвижном статоре. Нашли широкое применение за счёт отсутствия необходимости компенсировать токи большой величины на роторе.
  • Модели с неподвижным магнитным полем и подвижным якорем. Менее распространены из-за малой эффективности.

По типу возбуждения:

  • Возбуждение от постоянных магнитов.
  • Возбуждение осуществляется выпрямленным током. В конструкции отсутствуют щётки.
  • Возбуждение осуществляется от первичного маломощного генератора, установленного на одном валу с основным.
  • Питание обмотки возбуждения от автономного источника электрического тока, аккумуляторных батарей и др.

По количеству фаз: одно-, двух- и трёхфазные.

Каждое устройство содержит ротор, отлитый цельно из металла. Наконечники ротора изготовляют из листовой стали. Для обеспечения нормальной работы процесса магнитной индукции необходимо выдержать зазор.

На сердечники насажены катушки возбуждения, которые работают на постоянном токе. Подача переменного тока на автогенераторах переменного тока осуществляется за счёт щёток или контактных колец.

В современных моделях применяются генераторы на переменном токе. Выпрямитель выполнен в виде встроенного полупроводника.

Устройство и принцип работы автомобильного генератора

Основным узлом, какой приводит в действие механизм автомобиля, является автогенератор. Агрегат позволяет получить электрическую энергию за счёт преобразования механической. Обязательным элементом электросистемы автомобиля является реле регулятора напряжения, какой осуществляет контроль параметров системы.

Задачи регулятора напряжения:

  • Стабилизировать потенциал в сети при разбросе частоты вращения.
  • Исключить бесконтрольную разрядку аккумуляторной батареи. Низкое значение потенциала вызывает недозаряд, повышенное значение провоцирует быстрый выход из строя АКБ.

Устройство генератора постоянного тока:

  • Корпус. Открывается с двух сторон: со стороны контактных колец – задняя (в ней размещены подшипники и закреплён статор, находятся щётки и др. узлы, которые отвечают за выработку и контроль электрической энергии), передняя – со стороны шкива (присоединена к механической части автомобиля).
  • Статор. Цилиндрическая оболочка из листовой стали, в которой расположена трёхфазная обмотка. Этот узел вырабатывает электрическую энергию.
  • Ротор клювообразной формы, внутри которой расположены две втулки. В пространстве между ними находится обмотка возбуждения, напрямую присоединённая к медным контактным кольцам (цилиндрической формы).
  • Реле регулятора напряжения, необходимо для регулировки токовой нагрузки на автогенератор.
  • Шкив – устройство передачи механической энергии к генератору ременной передачи.
  • Выпрямители шестидиодные, которые распределены в двух группах, соединённых по три в положительный и отрицательный теплоотводы.
  • Подпружиненные щётки.
  • Защитная крышка.

Как выглядит шкив авто

Автогенератор переменного тока отличается габаритами, местом установки основных узлов и качеством. Схема и принцип работы генератор и составные части для всех моделей идентичны.

Автогенератор в сельской технике:

  • В тракторах не предусмотрена установка АКБ, поэтому на них устанавливают генераторы переменного тока с возбуждением на постоянных магнитах. На первых моделях применялись автогенераторы постоянного тока, которые запускались вручную. Реле регулятора напряжения был установлен на всех моделях.

При продольном устройстве двигателя автогенератор тока находится с наружной стороны картера, при поперечном – ротор закреплён на лицевой части коленчатого вала, а генератор в закрытом отсеке между коробкой передачи и картере ДВС.

  • На мототехнике схема производителя тока идентична автомобильным с АКБ. Для остальных моделей предусматривались конструкции на неодимовых магнитах.

Прикуривание должно проводиться с соблюдением правил безопасности, т. к. ток стартера на автомобиле-доноре значительно превышает допустимые токовые нагрузки на подключаемом генераторе. Наиболее частыми поломками данной ситуации является выход из строя регулятора напряжения.

Чтобы избежать выход из строя оборудования необходимо отключать ДВС и высвобождать клемму «-» на АКБ.

Для нормального движения ротора без нагрузки необходимо приложить 5% номинальной мощности устройства.

Вал генератора начинает оказывать сопротивление лишь при появлении магнитного поля статора, т. к. нагрузки (включение ламп, музыкальных устройств и др.)

Необходимая величина мощности, которая обеспечит питание обмотки возбуждения генератора, составляет 5% от общей выходной нагрузки.

Электрооборудование любого автомобиля включает в себя генератор - устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Требования, предъявляемые к генератору:

  • выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи;
  • напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.
Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи и, ускоренному выходу ее из строя.

Принцип работы генератора и его принципиальное конструктивное устройство одинаковы для всех автомобилей, отличаются только качеством изготовления, габаритами и расположением присоединительных узлов.

Основные части генератора:

  1. Шкив – служит для передачи механической энергии от двигателя к валу генератора посредством ремня;
  2. Корпус генератора состоит из двух крышек: передняя (со стороны шкива) и задняя (со стороны контактных колец), предназначены для крепления статора, установки генератора на двигателе и размещения подшипников (опор) ротора. На задней крышке размещаются выпрямитель, щеточный узел, регулятор напряжения (если он встроенный) и внешние выводы для подключения к системе электрооборудования;
  3. Ротор - стальной вал с расположенными на нем двумя стальными втулками кпювообразной формы. Между ними находится обмотка возбуждения, выводы которой соединены с контактными кольцами. Генераторы оборудованы преимущественно цилиндрическими медными контактными кольцами;
  4. Статор - пакет, набранный из стальных листов, имеющий форму трубы. В его пазах расположена трехфазная обмотка, в которой вырабатывается мощность генератора;
  5. Сборка с выпрямительными диодами - объединяет шесть мощных диодов, запрессованных по три в положительный и отрицательный теплоотводы;
  6. Регулятор напряжения - устройство, поддерживающее напряжение бортовой сети автомобиля в заданных пределах при изменении электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды;
  7. Щеточный узел – съемная пластмассовая конструкция. В ней установлены подпружиненные щетки, контактирующие с кольцами ротора;
  8. Защитная крышка диодного модуля .
Рассмотрим электрическую схему соединения элементов генератора.


Принципиальная электрическая схема генераторной установки:
1. Включатель зажигания;
2. Помехоподавляющий конденсатор;
3. Аккумуляторная батарея;
4. Лампа-индикатор исправности генератора;
5. Положительные диоды силового выпрямителя;
6. Отрицательные диоды силового выпрямителя;
7. Диоды обмотки возбуждения;
8. Обмотки трех фаз статора;
9. Обмотка возбуждения(ротор);
10. Щеточный узел;
11. Регулятор напряжения;
B+ Выход генератора "+";
B- "Масса" генератора;
D+ Питание обмотки возбуждения, опорное напряжение для регулятора напряжения.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется электрическое напряжение, пропорциональное скорости изменения магнитного потока. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются источник переменного магнитного поля и катушка, с которой непосредственно будет сниматься переменное напряжение.

Обмотка возбуждения с полюсной системой, валом и контактными кольцами образуют ротор , его важнейшую вращающуюся часть, которая и является источником переменного магнитного поля.


Ротор генератора 1. вал ротора;
2. полюса ротора;
3. обмотка возбуждения;
4. контактные кольца.

Полюсная система ротора имеет остаточный магнитный поток, который присутствует даже при отсутствии тока в обмотке возбуждения. Однако его значение невелико и способно обеспечить самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому, для первоначального намагничивания ротора через его обмотку пропускают небольшой ток от аккумуляторной батареи, обычно через лампу контроля работоспособности генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, чтобы генератор мог возбудиться уже на холостых оборотах двигателя. Исходя из этих соображений, мощность контрольной лампы обычно составляет 2…3 Вт. После того, как напряжение на обмотках статора достигает рабочей величины, лампа тухнет, и питание обмотки возбуждения осуществляется от самого генератора. В этом случае генератор работает на самовозбуждении.

Выходное напряжение снимается с обмоток статора . При вращении ротора напротив катушек обмотки статора появляются попеременно "северный" и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку статора, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения зависит от частоты вращения ротора генератора и числа его пар полюсов.


Статор генератора
1. обмотка статора;
2. выводы обмоток;
3. магнитопровод.

Обмотка статора трехфазная. Она состоит из трех отдельных обмоток, называемых обмотками фаз или просто фазами, намотанных по определенной технологии на магнитопровод. Напряжение и токи в обмотках смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов, как это показано на рисунке.


Осциллограммы фазовых напряжений обмоток
U 1 , U 2 , U 3 – напряжения обмоток;
Т – период сигнала (360 градусов);
F – фаза смещения (120 градусов).

Фазовые обмотки могут соединяться в "звезду" или "треугольник".


Виды соединения обмоток
1. «звездой»;
2. «треугольником».

При соединении в "треугольник" ток в каждой из обмоток в 1,7 раза меньше тока, отдаваемого генератором. Это значит, что при том же отдаваемом генератором токе, ток в обмотках при соединении в "треугольник" значительно меньше, чем у "звезды". Поэтому в генераторах большой мощности довольно часто применяют соединение в "треугольник", т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Более тонкий провод можно применять и при соединении типа "звезда". В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в "звезду", т. е. получается "двойная звезда".

Бортовая сеть автомобиля требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор. Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом "+" генератора, а другие три с выводом "-" ("массой"). Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. Следует обратить внимание на то, что под термином "выпрямительный диод" не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.


Сборка с выпрямительными диодами
1. силовые диоды;
2. дополнительные диоды;
3. теплоотвод.

Многие производители в целях защиты электронных узлов автомобиля от всплесков напряжения заменяют диоды силового моста стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25... 30 В. При достижении этого напряжения стабилитроны "пробиваются ", т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе "+" генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после "пробоя" используется и в регуляторах напряжения.

Как было отмечено выше, напряжения на обмотках изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t когда напряжение второй фазы отсутствует, первой фазы - положительно, а третьей - отрицательно. Направление напряжений фаз соответствует стрелкам показанным на рисунке.


Направление токов в обмотках и выпрямителе генератора

Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. Рассмотрев любые другие моменты времени, легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление - от вывода "+" генераторной установки к ее выводу "-" ("массе"), т. е. в нагрузке протекает постоянный (выпрямленный) ток.

У значительного количества типов генераторов обмотка возбуждения подключается к собственному выпрямителю, собранному на трех диодах. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, три из них общие с силовым выпрямителем (отрицательные диоды). Ток возбуждения значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов обмотки возбуждения применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25... 35 А).

При необходимости увеличения мощности генератора применяется дополнительное плечо выпрямителя.


Такая схема выпрямителя может иметь место только при соединении обмоток статора в "звезду", т. к. дополнительное плечо запитывается от "нулевой" точки "звезды". Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками - первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой.


Реальная форма фазного напряжения в виде суммы двух гармоник:
1. фазное напряжение обмотки;
2. первая гармоника;
3. третья гармоника;

Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном - нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность, добавлены диоды, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5...15% при частоте вращения более 3000 мин -1 .

Напряжение генератора без регулятора сильно зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение. Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Ранее применялись вибрационные регуляторы, а затем контактно-транзисторные. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.


Внешний вид электронных регуляторов напряжения

Оформление электронных полупроводниковых регуляторов может быть различным, но принцип работы у всех регуляторов одинаков. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить - увеличивается.

Недостатком приведенного варианта подключения регулятора является то, что регулятор поддерживает напряжение на выводе "D+" генератора, а потребители, в том числе, аккумуляторная батарея, включены на вывод "В+". Кроме того, при таком включении регулятор не воспринимает падения напряжения в соединительных проводах между генератором и аккумуляторной батареей и не вносит корректировок в напряжение генератора, чтобы компенсировать это падение. Эти недостатки устранены в следующей схеме, где напряжение на входную цепь регулятора подается от того узла, где его следует стабилизировать, обычно, это вывод "В+" генератора.


Некоторые регуляторы напряжения обладают свойством термокомпенсации - изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С.

На гибридных автомобилях генератор выполняет функцию стартер-генератора и используется в некоторых других системах типа стоп-старт.

По конструкционному исполнению автомобильные генераторы бывают компактные и традиционные. Они отличаются в основном лишь компоновкой вентилятора, конструкцией корпуса, выпрямительными элементами и приводным шкивом. Практически любой генератор, состоит: ротора, статора, корпуса, блока регулятора напряжения и выпрямительного и щёточного узла.

1 – поджимная втулка, 2 – втулка, 3 – буферная втулка, 4 – задняя крышка, 5 – винт крепления выпрямительного блока, 6 – выпрямительный блок, 7 – вентиль (выпрямительный диод), 8 – задний подшипник, 9 – контактные кольца, 10 – вал ротора, 11 – щетки, 12 – вывод «30» 13 – щеткодержатель, 14 – вывод «67», 15 – штекер нулевого провода, 16 – шпилька крепления генератора, 17 – крыльчатка вентилятора, 18 – шкив, 19 – пластины, 20 – кольцо, 21 – передний подшипник, 22 – обмотка ротора, 23 – ротор, 24 – обмотка статора, 25 – статор, 26 – передняя крышка

Для ВАЗ 2110:


1 – кожух, 2 – вывод «В+» для подключения потребителей? 3 – помехоподавляющая емкость 2,2 мкФ, 4 – общий вывод дополнительных выпрямителей (подсоединяется к выводу «D+» блока регулятора напряжения), 5 – держатель положительных выпрямительных диодов, 6 – держатель отрицательных диодов, 7 – выводы обмотки статора, 8 – блок регулятора напряжения, 9 – щеткодержатель, 10 – задняя крышка, 11 – передняя крышка, 12 – сердечник статора, 13 – обмотка статора, 14 – дистанционное кольцо, 15 – шайба, 16 – конусная шайба, 17 – шкив, 18 – гайка, 19 – вал ротора, 20 – передний подшипник вала ротора, 21 – клювообразные полюсные наконечники ротора, 22 – обмотка ротора, 23 – втулка, 24 – стяжной винт, 25 – задний подшипник ротора, 26 – втулка подшипника, 27 – контактные кольца, 28 – отрицательный диод, 29 – положительный диод, 30 – дополнительный диод, 31 – вывод «D» (общий вывод дополнительных диодов)


1 – аккумулятор; 2,3 – отрицательный и дополнительный диод; 4 – генератор; 5 – положительный диод; 6 – статорная обмотка; 7 – регулятор напряжения; 8 – роторная обмотка; 9 – емкость для подавления радиопомех; 10 – блок монтажный; 11 – контрольная лампа идикатор заряда батареи; 12 – измеритель напряжения вольтметр; 13,14 – реле и выключатель зажигания;

Для приборной панели ваз 2107


1 - аккумулятор; 2 - отрицательный диод; 3 - дополнительный диод; 4 - генератор; 5 - положительный диод; 6 - обмотка статора; 7 - регулятор напряжения; 8 - обмотка ротора; 9 - емкость подавления радиопомех; 10 - монтажный блок; 11 - контрольная лампа заряда аккумуляторной батареи в комбинации приборов; 12 - вольтметр; 13 - реле зажигания; 14 - выключатель зажигания.

Схема соединений системы генератора Г-222

Для автомобиля ВАЗ 2105


1 – генератор; 2 и 3 – отрицательный и положительный диод; 4 – обмотка статора; 5 – регулятор напряжения; 6 – роторная обмотка; 7 – емкость для подавления радиопомех; 8 – батарея аккумулятора; 9 – реле контрольной лампы заряда аккумуляторной батареи; 10 – блок монтажный; 11 – контрольная лампа заряда АКБ в комбинации приборов; 12 – вольтметр; 13 – реле зажигания; 14 – выключатель зажигания

Для автомобиля ВАЗ 2107


1 - генератор;
2 - отрицательный диод;
3 - положительный диод;
4 - обмотка статора;
5 – регулятор напряжения;
6 – обмотка ротора;
7 – конденсатор для подавления радиопомех;
8 - аккумуляторная батарея;
9 - реле контрольной лампы заряда аккумуляторной батареи;
10 - блок монтажный;
11 - контрольная лампа заряда аккумуляторной батареи в комбинации приборов;
12 - вольтметр;
13 - реле зажигания;
14 - выключатель зажигания

Основы работы генератора

Ротор – создает вращающееся магнитное поле, для этой цели на валу имеется обмотка возбуждения. Она располагается в двух половинках полюса, в каждой из которых есть шесть выступов – их называют клювами. Ещё на валу находятся два контактных кольца и именно через них осуществляется питание обмотки возбуждения. Кольца, обычно медные, но иногда встречаются стальные и латунные. К кольцам присоединены выводы обмотки возбуждения.

На валу ротора имеется одна либо две крыльчатки вентилятора и закреплён приводной ведомый шкив. Два необслуживаемых шариковых подшипника образуют подшипниковый узел ротора. Со стороны контактных колец на валу очень часто располагается роликовый подшипник.

Статор применяется для генерации переменного тока, состоит из металлического сердечника и обмотки, сердечник собран из стальных пластин и имеет тридцать шесть пазов для навивки обмоток, в пазах расположены по три обмотки, образующие трёхфазное соединение. Существуют два метода укладки обмоток в пазы статора – волновой метод и петлевой. Между собой обмотки соединяются по схеме «звезды» и «треугольника».

Подавляющее большинство конструктивных компонентов генератора расположено в корпусе. Корпус представляет собой две аллюминеевые крышки – переднюю и заднюю. Передняя находится со стороны приводного шкива, задняя со стороны контактных колец. Между собой крышки скреплены болтами. На поверхности крышек имеются вентиляционные отверстия, и крепёжные лапки. В зависимости от количества лап различают однолапное или двухлапное крепление генератора.

Щёточный узел предназначен для обеспечения передачи возбуждающего тока на контактные кольца. Узел состоит из 2-х графитных щёток и прижимных пружин, а также щёткодержателя. Обычно щёткодержатель распологается с регулятором напряжения в одном модуле.

Выпрямительный узел предназначен для преобразования синусоидального напряжения, вырабатываемого генератором, в постоянное напряжение для бортовой сети автомобиля. В модуле расположены – 6 силовых полупроводниковых диодов, т.е на каждую фазу – по два выпрямителя, один на «положительный», а другой на «отрицательный» вывод.

На большинстве современных генераторов обмотка возбуждения подсоединена через отдельную контактную группу, состоящую из двух диодов. Эти диоды препятствуют протеканию тока разряда аккумулятора через обмотку при неработающем двигателе. Если обмотки соединены «звездой», на нулевом выводе распологается два силовых дополнительных диода, обеспечивая рост мощности генератора до 15%. Выпрямительный блок подсоединен к схеме с помощью специальных контактных площадок методом пайки, сварки, или соединения винтами.

Регулятор напряжения – необходим для поддержания напряжения с выхода генератора в заданных параметрах. регуляторов напряжения. Он бывает в гибридном и интегральном исполнение.

Стабилизация напряжения осуществляется при изменении частоты вращения коленвала двигателя. Регулятор напряжения осуществляет управление частотой следования и продолжительностью импульсов. Кроме того он осуществляет изменение напряжения, для зарядки аккумулятора при термокомпенсации в зависимости от температуры окружающей среды. Чем выше температур, тем меньшее значение напряжение поступает к аккумулятору.

С помощью ременной передачи, происходит вращение ротора со скоростью, в два-три раза превышающей частоту вращения коленчатого вала. В зависимости от конструкции генератора применяется поликлиновый или клиновый ремень.

Есть еще индукторный генератор, то есть бесщёточный. Он состоит из ротора, состоящего из набора спрессованных тонких пластин из трансформаторного железа. На статоре имеется обмотка возбуждения. С помощью изменения магнитной проводимости воздушного зазора между ротором и статором.

Если в автомобильном замке зажигания поворачиваем ключ, на обмотку возбуждения идет ток через щёточный узел и контактные кольца. В обмотке создается . Ротор генератора начинает перемещаться вместе с вращением коленчатого вала. Обмотки статора пронизываются магнитным полем ротора. На выводах обмоток статора возникает переменное напряжение. С достижением заданной частоты вращения, возбуждающая обмотка запитывается от генератора, то есть, генератор оказывается в режиме самовозбуждения.

Переменное напряжение выпрямляется в постоянное. В этом состоянии генератор генерирует требуемый ток для зарядки питания потребителей и аккумулятора. Регулятор напряжения подключается к работе при изменении нагрузки и частоты вращения вала. Время включения обмотки возбуждения снижается при уменьшении нагрузки и ростом частоты вращения генератора. Время увеличивается с ростом нагрузки и снижением частоты вращения. Когда же ток потверждения превышает возможности генератора, начинает работать аккумуляторная батарея. На передней панели приборов имеется контрольная лампа, отображающая состояние генератора.

После пробега первых 2000 км и через каждые последующие 15000-20000 км необходимо проверять состояние и натяжение клинового ремня привода генератора. Для этого сильно надавливают большим пальцем на ремень приблизительно в середине. При этом он не должен прогибаться более чем на 5 мм, а если новый то не более чем на 2 мм. Если расстояние прогиба меньше клиновой ремень необходимо натянуть или заменить.

Чтобы демонтировать ремень, в некоторых моделях автомобилей необходимо ослабить фиксирующие винты, а затем с помощью монтировки или мощной отвертки переместить генератор к двигателю и снять ремень. В моделях авто с натяжным роликом на ролик нажимают и с помощью накидной головки ослабляют натяжки и снимают ремень.

Для увеличения натяжения ремня, необходимо ослабить фиксирующие винты, с помощью отвертки немного повернуть генератор от двигателя и снова закрепить винт. В моделях с натяжным роликом, последний самостоятельно регулирует натяжение ремня.

Проверяя клиновидный или клиновидно-ребристый ремень убедитесь в том, что последний не обтрепан и на нем отсутствуют трещины и изломы. Если же они имеются, ремень требуется заменить на новый. В случае если двигатель оснащен двойным клиновидным ремнем, эта пара должна заменяться вместе.

Неисправности генератора . При появлении достаточно звонкого, металлического шума, необходимо проверить не ослаблены ли гайки шкива. Если причина не в них, могут быть повреждены подшипники или могло произойти межвинтовое замыкании на "массу".

При подключении аккумулятора, проверьте, правильность подключения к полюсным штырям. Кроме того нельзя допускать отсоединения аккумуляторной батареи от бортовой сети при включенном двигателе и отключенных потребителях. Поэтому при любом техобслуживании генератора необходимо проверять исправность цепи заряда батареи.

Нельзя, допускать того, чтобы провода соприкасались с корпусом регулятора напряжения. Лучше, всего расположить их на расстоянии 3-5 см. Т.к регулятор может сильно нагреваться в процессе работы, а изоляция проводов может нарушиться. Крышка регулятора должна быть всегда очень плотно прижата к корпусу, а прокладка между крышкой и корпусом должна отлично изолировать пространство под крышкой.

Замена щеток генератора . Щетки генератора необходимо проверить после 50000-60000 км пробега. Для этого не требуется демонтировать генератор, а всего лишь:
Отсоедините кабель "минус" от аккумуляторной батареи, затем открутите регулятор напряжения. Если изношенные щетки выступают из щеткодержателя меньше 5 мм, их необходимо заменить на новые. Перед установкой регулятора с новым щеткодержателем, необходимо очистить гнездо щеткодержателя от накопившейся угольной пыли. Для замены щеток отпаяйте соединительные провода, а в случае необходимости очистите контактную поверхность и проверить силу соприкасания контактных пружин.

Установив новые щетки, проверьте, свободность их хода в держателе. Затем слегка прикрепите регулятор напряжения стопорным винтом, и с нажимом, но очень осторожно установите в конечное положение и плотно закрутите. Не забудьте после окончания процесса замены щеток генератора подключить кабель "массы" к батареи.

Иногда в новом автомобиле контрольная лампа на панели может ошибочно показывать "отсутствие заряда батареи". Это происходит потому, что у нового генератора ещё не успели притереться щетки.

Принцип работы генератора автомобиля понять совсем не сложно, если рассмотреть основные узлы этого важного устройства транспортного средства, которое превращает получаемую от мотора машины механическую энергию в электрическую.

Схема автомобильного генератора – из чего состоит генератор автомобиля?

Данный узел автомобиля необходим для зарядки и обеспечения электрооборудования при двигателе ТС необходимым ему электрическим питанием. Как правило, находится генератор в передней части автомобильного двигателя. На сегодняшний день существует два конструктивных варианта исполнения интересующего нас устройства:

  • стандартная;
  • компактная.

И первая и вторая конструкции имеют ряд общих элементов. К таковым относят следующие механизмы:

  • щеточный узел;
  • регулятор напряжения;
  • статор;
  • выпрямительное устройство;
  • корпус;
  • ротор.

Разница же между стандартным и компактным генератором заключается в том, какую конструкцию имеет их корпус, приводной шкив, выпрямительный узел и вентилятор. Кроме того, они имеют разные геометрические размеры, что зависит не только от их устройства, но еще и от фирмы-производителя. При этом работа автомобильного генератора остается неизменной, какой бы вид ему не придали инженеры-конструкторы.

Принцип работы генератора автомобиля – как именно он работает?

Функционирование интересующего нас устройства базируется на явлении электромагнитной индукции. Суть ее в следующем. Когда магнитный поток проходит через медную катушку, на ее выводах образуется напряжение. Оно по своей величине пропорционально скорости, с которой этот самый поток изменяется.

А для того, чтобы магнитный поток смог образоваться, согласно эффекту индукции, следует пропустить электроток через катушку. По сути, если требуется получить электрический переменный ток, достаточно иметь под рукой:

  • катушку (переменное напряжение будет сниматься именно с нее);
  • источник магнитного переменного поля.

Указанным источником в современном транспортном средстве является вращающийся ротор, состоящий из вала, полюсной системы и контактных колец. А вот другой важный элемент – статор – нужен для формирования электротока (переменного). Статор состоит из сердечника, который набирается из стальных пластин, и обмотки.

Принцип работы автомобильного генератора – принципиальная элеткросхема узла

Недостаточно знать, как устроен генератор автомобиля в общем, если вы хотите полностью разобраться с принципом его работы. Надлежит, кроме того, изучить электросхему генераторного узла, которая включает в себя такие компоненты:

  • включатель зажигания;
  • «массу»;
  • щеточный узел;
  • конденсатор, предназначенный для подавления помех;
  • диоды обмотки;
  • плюсовой выход механизма;
  • диоды выпрямителя (силового) – отрицательные и положительные;
  • питание обмотки;
  • регулятор напряжения;
  • обмотки статора;
  • сигнальную лампу (она подает сигнал о неисправности описываемого устройства).

Постоянное же напряжение из переменного получается за счет работы выпрямительного блока, что дает возможность генераторному устройству снабжать АКБ током. При изменении показателей частоты вращения и нагрузки коленвала начинает действовать регулятор напряжения. Его задача состоит в том, чтобы вовремя запустить обмотку возбуждения. Как видим, принцип функционирования генератора довольно-таки прост и понятен.